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Abstract
An aspherical ion model (AIM) is constructed for lithium oxide, Li2O. The
model incorporates both many-body polarization and short-range ion distortion
effects. A procedure for extracting the required model parameters by fitting to
results from a series of electronic structure calculations is described. The model
is tested with respect to both static and dynamic properties. The experimentally
observed Cauchy violation in the elastic constants and phonon frequencies are
well reproduced as is the onset temperature for superionic behaviour in the
Li+ sublattice. The system is shown to display a peak in the heat capacity as
a function of temperature. The correlated and uncorrelated ion dynamics are
studied and the origin of the respective solid- and liquid-state Haven ratios is
rationalized.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The atomistic computer modelling of ionic oxide ceramics has a long history. Oxides represent
a particularly difficult class of materials to accurately represent with relatively simple potential
energy functions. The formation of the doubly charged oxide anion, O2−, is stabilized by
the presence of the condensed phase environment (the ion can be considered as sitting in a
stabilizing potential well [1–3]). This is distinct from, for example, the iso-electronic F− ion
which is stable as a free ion. As a result, the properties of the oxide ion are relatively sensitive
to the details of the confining environment and so the use of the simplest ionic models (in
which the constituent ions are represented by charged spheres modelled as having rigid charge
densities) may become problematic if such models are to be accurate over appreciable regions
of phase space. The basic pair potential-based models may be improved upon by the inclusion
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of many-body effects such as those present as a result of ion polarization and by the short-
range distortion of the ion shape [4]. The advantage of this approach over electronic structure
methodologies is that the models retain the computational tractability of those based on simpler
energy functions and, as a result, significant length scales and timescales remain accessible.
A potential disadvantage, however, is that the number of parameters required to fully describe
these effects may become prohibitive and, as a result, difficult to parametrize. A solution to
this problem is to fit these parameters to properties derived directly from electronic structure
calculations (such as ion forces, multipoles and cell stresses).

In this paper a fully distortable model for a specific oxide, lithium oxide (Li2O), is
parametrized by reference to well-directed electronic structure calculations. This system
represents a useful step from previous work which has focused on MgO [5, 6], the group
of alkaline-earth oxides in general [7] and Al2O3 [8]. Furthermore, Li2O is a useful example
of a superionic material analogous to the alkaline-earth fluorides CaF2, SrF2 and BaF2 [9]. Li2O
forms an anti-fluorite structure in which the Li+ cations occupy all of the tetrahedral holes in a
face-centred cubic anion sublattice. Unlike the fluorides, in which the anion sublattice becomes
mobile at a temperature lower than the melting point, it is the Li+ cation sublattice which
becomes mobile. As a result, the effective modelling of Li2O represents a useful step both in
comparison with the modelling of alkaline-earth (and other) fluorides [10, 11] and towards the
modelling of more complex oxides, such as LiMnO2 and LiCoO2, which are important battery
materials and in which it is the Li+ ions which are mobile. Pair potential models have been
constructed for this system by reference to both Hartree–Fock [12] and density-functional [13]
electronic structure calculations as well as from empirical considerations [14–21]. Such
potentials, however, cannot reproduce known properties of Li2O such as the pronounced
Cauchy violation [22].

In this paper a fully distortable ionic model will be constructed for lithium oxide. In
section 2 the use of electronic structure calculations is described and the fitting procedure
required to fit the AIM parameters is discussed. In addition, the basic AIM is described for
completeness. In section 3 the model is tested by reference to the static (lattice parameter and
elastic constants) and dynamic (thermal expansivity, phonon dispersion curves, melting point,
heat capacity and ion dynamics) properties.

2. Potential model

2.1. The aspherical ion model

The aspherical ion model (AIM) has been described in detail recently [23]. Here, we present
a summary for completeness. The functional forms for the AIM are chosen by reference to
series of well-directed electronic structure calculations [2, 5, 24, 25]. The potential may be
considered as constructed from four components: charge–charge,dispersion, overlap repulsion
and polarization. The first two components are purely pairwise additive:

V qq =
∑
i� j

qi q j

ri j
, (2.1)

where qi is the (formal) charge on ion i . The dispersion interactions include dipole–dipole and
dipole–quadrupole terms

V disp = −
∑
i� j

[ f i j
6 (r i j)Ci j

6 /r i j6
+ f i j

8 (r i j)Ci j
8 /r i j8

], (2.2)

where Ci j
6 and Ci j

8 are the dipole–dipole and dipole–quadrupole dispersion coefficients
respectively, and f i j

n are Tang–Toennies dispersion damping functions [26], which describe
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short-range corrections to the asymptotic dispersion term.
The overlap repulsion component is given by

V rep =
∑

i∈O, j∈Li

[A−+e−a−+ρi j
+ B−+e−b−+ρi j

] +
∑

i, j∈O

A−−e−a−−r i j

+
∑
i∈O

[D(eβδσ i
+ e−βδσ i

) + (eζ 2|νi |2 − 1) + (eη2 |κi |2 − 1)], (2.3)

where

ρi j = r i j − δσ i − S(1)
α νi

α − S(2)
αβ κ i

αβ, (2.4)

and summation of repeated indexes is implied. The variable δσ i characterizes the deviation of
the radius of oxide anion i from its default value, {νi

α} are a set of three variables describing the
Cartesian components of a dipolar distortion of the ion, and {κ i

αβ} are a set of five independent
variables describing the corresponding quadrupolar shape distortions. (In equation (2.3),
|κ |2 = κ2

xx + κ2
yy + κ2

zz + 2(κ2
xy + κ2

xz + κ2
yz) and S(1)

α = r i j
α /r i j and S(2)

αβ = 3r i j
α r i j

β /r i j2 − δαβ

are interaction tensors.) The last summations include the self-energy terms, representing
the energy required to deform the anion charge density, with β, ζ and η as effective force
constants. The extent of each ion’s distortion is determined at each molecular dynamics time
step by energy minimization.

Due to the small cation size, the cation–cation repulsion is sufficiently modelled by the
Coulomb term. The shape deformations are taken as relatively insignificant for the anion–
anion repulsions, which are therefore represented by simple Born–Mayer exponentials. It is
worth noting, however, that there is no fundamental reason (beyond an increase in the model
complexity) for not including such distortion effects for all interactions.

The polarization part of the potential incorporates dipolar and quadrupolar contributions
[27],

V pol =
∑

i, j∈O

(
(qiµ j

α − q jµi
α)T (1)

α +

(
qiθ

j
αβ

3
+

θ i
αβq j

3
− µi

αµ
j
β

)
T (2)

αβ

+

(
µi

αθ
j
βγ

3
+

θ i
αβµ

j
γ

3

)
T (3)

αβγ +
θ i
αβθ

j
γ δ

9
T (4)

αβγ δ

)

+
∑

i∈O, j∈Li

(
q jµi

α[1 − gD(r i j)]T (1)
α +

θ i
αβq j

3
[1 − gQ(r i j)]T (2)

αβ

)

+
∑
i∈O

(ki
1| �µi |2 + ki

2µ
i
αθ i

αβµi
β + ki

3θ
i
αβθ i

αβ + ki
4| �µi · �µi |2), (2.5)

where ki
1 = 1

2αi , ki
2 = Bi

4αi2 Ci
, ki

3 = 1
6Ci , ki

4 = −Bi2

16αi4 Ci
, αi , Bi and Ci the dipole,

dipole–dipole–quadrupole and quadrupole polarizabilities of ion i , respectively, and Tαβγ δ =
∇α∇β∇γ ∇δ · · · 1

r i j are the multipole interaction tensors [28]. The instantaneous values of these
moments are obtained by minimization of this expression. The charge–dipole and charge–
quadrupole cation–anion asymptotic functions include terms which account for penetration
effects at short range by using Tang–Toennies damping functions [26] of the form,

gD(r i j) = cDe−bDr i j
4∑

k=0

(bDr i j )k

k!
, (2.6)

gQ(r i j) = cQe−bQr i j
6∑

k=0

(bQr i j)k

k!
, (2.7)
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with D and Q standing for dipolar and quadrupolar parts. While the parameters bD and bQ

determine the range at which the overlap of the charge densities affects the induced multipoles,
the parameters cD and cQ determine the strength of the ion response to this effect. The short-
range induction corrections in the anion–anion interactions are neglected and the Li ions are
assumed not to be polarizable.

The constructed AIM potential contains seventeen additional degrees of freedom in order
to describe the state of the electron charge density of the ions. The ground state configuration
of the electronic degrees of freedom at each time step is extracted using a conjugate gradients
routine [29], starting from their values at the preceding time step.

2.2. Determining the AIM parameters

The AIM potential parameters are derived by reference to ab initio DFT calculations performed
on atomic configurations for several condensed phases, in which significantly different
coordination environments are sampled. The atomic configurations are derived from high
temperature MD simulations in the isothermal–isobaric (N pT ) [30] ensemble on the fluorite
crystal structure and the liquid using an existing effective pair potential [12]. The pair potential
used [31] should be good enough to generate representative configurations (as evidenced by
its relative success in simulating known properties of Li2O [12]).

Atomic configurations from each run are selected and the ab initio forces, stresses and
multipole moments are extracted for each of the ions in them using the plane-wave (periodic
boundary condition) DFT CASTEP code [32]3. The AIM parameters are then optimized such
that the forces, stresses and multipole moments calculated with the AIM for the same atomic
configurations reproduce the respective ab initio values.

2.2.1. Calculating the ab initio forces, stresses and multipoles. For the CASTEP calculations,
norm-conserving, non-local ultrasoft pseudopotentials for all the ions have been used, together
with a kinetic energy cut-off of 580 eV on a 60 × 60 × 60 FFT grid and the PW91 GGA
exchange–correlation functional [33, 34]. Our plane-wave cut-offs are considerably larger
than would normally be used in order to ensure a high degree of convergence of the forces with
respect to basis set size. A finite basis set correction to the stress tensor [32] was estimated by
performing calculations at three different values of the kinetic energy cut-off.

The electronic wavefunctions are the Kohn–Sham orbitals and are delocalized
throughout the simulation cell. To allow for the association of orbitals with each ion
a localized representation of the electron density distribution is generated via a Wannier
transformation [35, 36]. Under the condition of maximal localization [37] a set of Wannier
(or Boys) orbitals is obtained which provides a picture of the electron distribution around
ions polarized by the interactions with the surrounding environment. A complete theory of
electric polarization in crystalline dielectrics has been developed in recent years [38–42],
which validates the calculation of the dipole moments of single ions from the centre of charge
of the subset of maximally localized Wannier functions (MLWFs) which are localized in their
vicinity [43, 44]. In addition, it has been recently shown how ion quadrupole moments may
be extracted in analogous fashion [23].

The MLWFs [37] are determined by unitary transformations of the Kohn–Sham
eigenvectors

wn(r) =
J∑

m=1

Umn|φm〉, (2.8)

3 We used the code CASTEP 3.9 academic version, licensed under the UKCP-MSI Agreement, 1999.
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Figure 1. A very low density isosurface of one of the O2−-centred MLWFs for Li2O in the anti-
fluorite structure, with the central O2− ion diagonally displaced from its equilibrium site. White
and dark balls represent the Li and O ions, respectively.

where the sum runs over all the Kohn–Sham states φi , and the unitary matrix U is determined
by iterative minimization of the Wannier function spread [37]


 =
J∑

n=1

(〈r2〉n − 〈r〉2
n). (2.9)

Figure 1 shows a low density isosurface of a single MLWF centred close to an O2− ion.
The charge density is well localized within the range of nearest neighbours, as expected for
an ionic system. With the 1s orbital pseudized, four MLWFs are found in the vicinity of each
oxygen atom. There is also one MLWF attached to each Li atom. The latter are much more
localized with a Wannier spread being about a factor of two smaller than the respective MLWFs
of the anions. Their isosurfaces have a spherical shape and resemble the Li 1s orbitals.

The Wannier function centre (WFC) positions are computed according to [45, 46]

(rα)n = −
3∑

β=1

M−1
αβ

bβ

Im ln[U†K(β)U]nn, α = 1, 2, 3, (2.10)

with r1 = x , r2 = y, r3 = z. Mαβ = (bα · ûβ)b−1
α is the normalized projection of the αth

reciprocal lattice vector on the βth Cartesian unit vector, and

K (β)

i j = 〈φi |e−ibβ ·r|φ j〉. (2.11)

The components of the electronic contribution to the total dipole moment p can be
estimated from the WFC positions,

p = −2
J∑

n=1

rn, (2.12)

where the sum runs over the total number of electronic states. Since the MLWFs are localized,
partial dipole moments may be associated with subsets of states grouped around a single centre
allowing for separation of charge density into the contributions from single ions. The ionic
partial dipole moments for each ion I are defined by,

µI
α = −2

∑
nεI

rn,α + Z I RI,α, (2.13)
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where the sum runs over those MLWFs which are close to ion I, and Z I is the charge of the
pseudopotential core in the position RI.

The components of the quadrupole on ion I are evaluated from the real-space integral of
the charge densities of the MLWFs

θ I
αβ = −2

∑
nεI

∫
V I

cut

dr |wn(r)|2(1/2)(3r I
αr I

β − (r I)2δαβ). (2.14)

Here the integral runs over the space within a sphere of radius rcut around I, and rI is the
distance from r to the nucleus of I calculated with a minimum image convention: the factor
of −2 accounts for the two electrons in each MLWF and the electronic charge.

2.2.2. Fitting procedure. The polarization terms in the AIM are optimized first by varying
the set {χP } of relevant parameters in order to minimize the objective function

AP({χP}) = 1

2NO

∑
i∈O,A

( | �µA
i ({χP}) − �µA,ai

i |2
| �µA,ai

i |2 +
| �θ A

i ({χP}) − �θ A,ai
i |2

| �θ A,ai
i |2

)
(2.15)

with the index i running over the anions of one configuration and NO being the total number of
anions of all configurations. The different sets of configurations on which the multipoles have
been calculated are labelled by the index A. �µi comprises the three components of the induced
dipole on atom i , µx , µy and µz , while �θi is the vector of the five independent components
of the respective tensor of the quadrupole moment, θi,αβ . �µA

i ({χP}) and �θ A
i ({χP}) refer to

the multipoles calculated from the model (for ion i ) in configuration A with the parameter set
{χP}, �µA,ai

i and �θ A,ai
i are the corresponding ab initio values.

Standard simplex and gradient minimization algorithms [29] are used to minimize the
objective function (2.15) over the full set of all dipoles and quadrupoles for every ion in all
configurations simultaneously. At each step of the fitting procedure the polarization energy
Vpol (2.5) is minimized to obtain the ‘adiabatic’ dipoles and quadrupoles. All the parameters in
the polarization potential are allowed to vary (the polarizabilities α, B and C and the damping
parameters b and c).

In the second step of the fitting procedure all parameters entering the short-range repulsion
part of the potential (equation (2.3)) are optimized. Now the polarization parameters {χP}
remain fixed and the set of short-range potential parameters {χsr} is varied to minimize the
objective function

AF ({χsr}) = 1

2Ntot

∑
i,A

| �F A
i ({χsr}) − �F A,ai

i |2
| �F A,ai

i |2 +
1

2NA

∑
A

| �S A({χsr}) − �S A,ai |2
| �S A,ai |2 , (2.16)

to match the AIM forces and stress tensors to the ab initio results. Now the index i runs over
all ions of configuration A. �F A,ai

i and �S A,ai refer to the force on ion i and a vector containing
the stress tensor elements extracted from the ab initio calculation of configuration A, and
�F A

i ({χ}) and �S A({χ}) to those calculated from the AIM with parameters {χsr} at exactly the
same ionic configuration. NA is the number of atomic configurations and Ntot the total number
of ions included in the force fit. The dispersion interactions are included in the evaluation of
the objective function AF but the dipole–dipole (Ci j

6 ) and dipole–quadrupole (Ci j
8 ) dispersion

coefficients are fixed to the values given in [24, 47] (and so are very close to what is obtained
from the dipole polarizabilities of the ions by applying Slater–Kirkwood and Starkschall–
Gordon formulae, respectively [48]). Tang–Toennies dispersion damping parameter (for the
functions f6 and f8) are fixed at values previously derived to model MgO. The quality of the
fit of the objective function is found to be insensitive to allowing these terms to vary.
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Figure 2. The quality of the force fit demonstrated for a set of 100 representative ions. The solid
curves connect results obtained from the AIM with the final set of parameters, the points indicate
the respective ab initio forces. The first 50 ions are Li+ ions taken from a liquid configuration of
Li2O. The other 50 ions represent O2− ions from a high pressure solid configuration.

For the potential optimization of Li2O we used four configurations, each of them containing
324 ions. These configurations were extracted from simulations performed with an existing
effective pair potential and were taken from runs on the low and high temperature anti-fluorite
crystal (below and above the superionic transition temperature respectively) and the liquid
(from which two independent configurations were extracted). The use of relatively large cells
is to avoid the difficulties associated with truncation of the short-range exponentials and the
consequential truncation correction to the stress tensor.

Uniformly good fits were obtained across the range of configurations sampled. The quality
of the fits is illustrated in figure 2 for the three force components of 100 representative ions
taken from a solid and a liquid configuration. The solid lines connect the predicted forces on
the ions predicted from the AIM, whereas the dots indicate the corresponding ab initio forces.
The quality of the fit to the stress tensors and the dipoles is equally good (objective function
around or smaller than 0.1), although the magnitudes of the quadrupole components obtained
with the AIM are found to be systematically too small compared to the ab initio values.

Tables 1 and 2 list the fitted AIM parameters required to complete the equations listed
in the previous sections. An important outcome of the fitting procedure is that the derived
parameters should retain their physical meaning. For example, in the present work the dipole
polarizability, α, should be close to that derived from the experimental refractive index. Such
a procedure gives a value of αO2− = 14.17 au [49] compared with the fitted values of 13.76 au.
In addition, the short-range damping parameters sets, {bD, cD, bQ, cQ}, can be compared with
those derived directly for other systems by performing ab initio electronic structure calculations
in which multipoles are generated using specifically distorted crystalline environments [25].
The values for this parameter set listed in the tables are fully consistent with those considered
previously [25].
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Table 1. Parameters in the repulsive and polarization parts of the potential. All values are in
atomic units.

A a B b Self-CIM Self-AIM bpol cpol

−+ 30.91 1.748 8763 4.573 D = 0.381 ζ = 1.297 bD = 1.701 cD = 1.431
−− 21 657 2.9684 — — β = 0.740 η = 2.723 bQ = 1.657 cQ = 1.227

Table 2. Polarizabilities, dispersion coefficients (dipole–dipole and dipole–quadrupole) and
dispersion damping parameters. All values are in atomic units.

α B C C6 C8 bdisp

O2− 13.76 −68.8 25.24 −+ 2.2 25.3 2.21
— — — — −− 110.0 1800 1.44

++ 0.22 0.86 —

Table 3. Static (0 K) lattice constants (a0), bulk moduli (B) and elastic constants (Cαβ ).

Property AIM Expta [22] DFT [13] HF [52] HF [53]

a0 (Å) 4.607 4.574 4.533 4.573 4.570
B (GPa) 80 88 89 92.6 94.6
C11 (GPa) 202 217 238 — —
C12 (GPa) 19 24 16 — —
C44 (GPa) 59 68 66 — —
� (GPa) −40 −44 −50 — —
A 0.64 0.70 0.59 — —

a Extrapolation to 0 K. � (≡C12 − C44) is a measure of the magnitude of the Cauchy violation. A
is the elastic anisotropy factor, A = 2C44/(C11 − C12).

3. Results

3.1. Static properties

Table 3 lists the static (0 K) properties calculated using the fitted AIM. The 0 K lattice
parameter, extracted from the calculated static energy/volume curve, is in excellent agreement
with experiment [51] being ∼0.7% greater. Furthermore, the experimental value is derived
from the temperature-dependent data at temperatures starting from 293 K and, as a result, the
method by which the lattice parameter is extrapolated to 0 K is open to interpretation.

Table 3 also lists the calculated bulk modulus, B , and elastic constants, Cαβ , compared
with those determined experimentally [22] and those calculated using electronic structure
methodologies [13, 52, 53]. The bulk modulus is calculated by fitting a fifth order polynomial
to the energy/volume curves and using the relationship, B = V d2U

dV 2 . The model value is in
excellent agreement with experiment and the values derived from the electronic structure
calculations. C11 and C12 are calculated from the bulk modulus and the relation B ≡
1
3 (C11 + 2C12) and the shear modulus (Cs = 1

2 (C11 − C12)). In order to calculate the shear
modulus the strain matrix

ε =



2δ
3 0 0
0 −δ

3 0
0 0 −δ

3


 , (3.1)

is applied with δ ranging from −0.006 to +0.006 au (within the harmonic range). The elastic



The construction and application of a fully flexible computer simulation model for lithium oxide S2803

0 500 1000 1500 2000 2500 3000

T [K].

25

30

35

40

V
 [

Å
3 /m

ol
ec

ul
e]

.

500 1000 1500 2000
24

26

28

T
m

Figure 3. Calculated equilibrium volumes as a function of temperature for the Li2O AIM in the
anti-fluorite crystal (×) and the liquid states (�). The approximate melting point, as determined in
this work, is indicated by the arrow. The experimental crystal data from [22, 56] (+) and [51] (◦)
are also shown. The inset shows a magnified section of the solid crystal curve in order to highlight
the change in gradient (at ∼1450 K) associated with the change in volume across the superionic
transition.

constant C44 is calculated using the following strain matrix with the same δ-values,

ε2 =



0 δ
2

δ
2

δ
2 0 δ

2
δ
2

δ
2 0


 . (3.2)

As for the bulk modulus, the calculated values for the elastic constants are in excellent
agreement with both experimental and density-functional values. Again, the experimentally
determined elastic constants are susceptible to error as they are extracted by extrapolating
finite-temperature data to 0 K. Significantly, the magnitude and sign of the Cauchy violation
(� = C12 −C44) are both in excellent agreement with experiment. The Cauchy violation is the
direct result of the presence of non-central forces in the model (in a model with only pairwise
interactions the relation C12 = C44 must hold). As a result, the Cauchy violation is a direct
measure of the magnitude of the many-body short-range distortions of the oxide anions in the
present model.

3.2. ‘Simple’ dynamic properties

Figure 3 shows the equilibrium system volume as a function of temperature for both the
crystalline (anti-fluorite structure) solid and the liquid states. Each volume is determined
by performing constant temperature and pressure molecular dynamics, applied using Nosé–
Hoover thermostats and barostats respectively [54, 30]. The experimental crystal volume is
shown for comparison [51]. The calculated thermal expansivity of 2.92 ×10−5 K−1 compares
with experimental values of 3.36 × 10−5 K−1 [22] and 3.29 × 10−5 K−1 [55]. This value
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has been calculated over the temperature range 300–1150 K, below the superionic transition
temperature and consistent with the experimental analysis. As highlighted in the inset, the
rate of change of the volume with temperature undergoes a significant change at ∼1450 K
consistent with the change seen in the experimental data (see figure 4 of [22]). We anticipate
that this change in gradient corresponds to the onset of superionic behaviour. The calculated
value for the liquid is 8.0 × 10−5 K−1 in the temperature range 2000–3000 K.

The phonons are calculated from the simulations using the following equations for the
longitudinal and transverse currents of the charge, mass and a third variable which picks out
the relative motion of Li+ ions. Fourier transformation of these current correlation functions
produces peaks which give the phonon frequencies at a particular k-vector. The longitudinal
correlation function, CL

X X , for the variable X j (=Q j , the charge on ion j , for example) is given
by

CL
X X (k, t) =

〈( N∑
j=1

−X j (t)ik · v j(t)e−ik·r j (t)

)( N∑
l=1

Xl(t)ik · vl(t)e−ik·rl(t)

)〉
, (3.3)

whilst the transverse correlation function is given by:

CT
X X (k, t) =

〈( N∑
j=1

−X j (t)ik ∧ v j(t)e−ik·r j (t)

)( N∑
l=1

Xl(t)ik ∧ vl(t)e−ik·rl (t)

)〉
. (3.4)

The frequencies at k-vectors along three high symmetry directions, {ξ, 0, 0}, {ξ, ξ, 0} and
{ξ, ξ, ξ}, are calculated in order to allow for direct comparison with the experimental phonon
dispersion curves [56]. With X j = Q j , the optic mode peak dominates the spectrum, and for
X j = M j (ion mass) the acoustic branch is dominant. In order to obtain the second ‘optic’
branch, X j is set equal to unity for ions on one of the two Li+ fcc sublattices, which together
make up the simple cubic lattice of Li+ in the anti-fluorite structure, and to minus one for the
other sublattice. Three simulation cells, corresponding to 3×3×3, 4×4×4 and 5×5×5 units
cells (324, 768 and 1500 ions respectively) are used in order to give an appreciable sampling
of the Brillouin zone along the three high symmetry directions. The choice of these three cells
allows for the ξ sets ( 1

3 , 2
3 , 1), ( 1

4 , 1
2 , 3

4 , 1) and ( 1
5 , 2

5 , 3
5 , 4

5 , 1) to be sampled.
Figure 4 shows the calculated phonon dispersion curves along the three high symmetry

directions considered. The figure also shows the curves generated using a shell model fitted
directly to the experimental data [56, 57]. The calculated dispersion curves are, in general,
in excellent agreement with experiment especially considering the massive contributions to
the phonon mode frequencies of the inclusion of the anion distortions [5, 24]. The acoustic
mode frequencies are near perfect as the �-point is approached, reflecting the accuracy of
the elastic constants discussed above. Regarding the optic dispersion curves, the TO2 mode
frequencies are generally lower than those observed experimentally. Considering the nature
of this mode (see, for example, the discussion of these mode frequencies with respect to the
fluorite-structured PbF2 in [11]) this may indicate that the oxide anion is slightly too dipolar
distortable. The LO1 mode frequencies are, however, in excellent agreement with experiment
indicating that the quadrupolar distortions of the oxide ion are well behaved [11]. Furthermore,
the relatively ‘flat’ shape of this curve along X −→ � in the [ξ00] direction is reproduced.

3.3. Melting point

The zero pressure melting point can be estimated by direct simulation of the liquid/solid
interface [58]. Here, the interfaces are constructed by combining two separate simulation cells
containing fluorite crystal and liquid configurations respectively, corresponding to equilibrated
configurations generated at state points near the estimated coexistence temperature. Cells
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Figure 4. Phonon dispersion curves for the Li2O AIM at 298 K calculated along the three high
symmetry directions indicated. The light grey lines represent the mode frequencies calculated
using a shell model fitted to the experimental data [56, 57]. Key to the modes: ×—longitudinal
optical, +—transverse optical, ◦—longitudinal acoustic, �—transverse acoustic.

containing the equilibrated crystal and liquid configurations, are combined to give a tetragonal
simulation cell elongated along a single axis with the liquid/solid interface set up so as
to be perpendicular to the crystal [100] direction. The cell is periodically repeated in
three dimensions giving an infinite series of liquid/solid slabs containing two interfaces
per simulation cell. Simulations are performed in the N pT ensemble using the initial ion
velocities carried over from the separate crystal and liquid simulations. The ions in the initial
configurations, in particular in the interfacial region, are in poor equilibrium. The use of the
Nosé–Hoover thermostats acts to control any rise in temperature associated with the relaxations
in these regions and hence prevents uncontrolled melting or recrystallization at the interface.
Once the system has been properly re-equilibrated the temperature is systematically varied until
the liquid and crystal are in equilibrium [59] as monitored by reference to the time evolution
of the system energy.

Figure 5 shows a molecular graphics ‘snapshot’ of the simulation cell containing the
liquid/solid interface. The system contains 216 molecules originally in the crystal and a further
216 molecules originally in the liquid cell. The motion of the interface may also usefully be
monitored by constructing time-dependent ion density profiles perpendicular to the interface
(as shown in the figure). The present AIM gives a melting point of ∼1900 K compared with
the experimental value of 1705 K [50]. The calculation uses an ideal (defect free) crystal slab
and so, since the real system melting point would be expected to be heavily influenced by the
presence of defects, our value represents an upper limit to the model transition temperature.

3.4. Heat capacities

The heat capacity of these systems is known to be a useful indicator of the onset of superionic
behaviour. Type-II superionic materials, such as the alkaline-earth fluorides,exhibit a so-called
Bredig transition [60] which is characterized by a (λ-) peak present in the heat capacity. The
heat capacity is calculated from the internal energies of the crystals as a function of temperature
and, since each system has been pre-equilibrated to zero pressure, we are measuring Cp.
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Figure 5. A molecular graphics ‘snapshot’ of the solid/liquid interface system at the estimated
melting point of 1900 K. The light circles represent those anions originally in the liquid
configuration, and the darker circles those originally in the crystal. The small circles represent the
cations. The lower panel shows a density profile (projected as for the snapshot) at this temperature
calculated over ∼5 ps of molecular dynamics. The dark and light lines represent the cation and
anion distribution respectively.

Figure 6 shows the calculated heat capacity for the present system compared with that
recently generated for CaF2 [10]. The peak in Cp occurs at ∼1450 K compared with the
experimentally estimated temperature marking the onset of superionic behaviour at 1350 K
(estimated from the change in gradient of the elastic constants with temperature) [51]. The
peak rises from a level of ∼9R prior to the superionic transition (equivalent to the Debye limit
for a harmonic solid) to a height of ∼14.5R (∼120.6 J mol−1 K−1). The entropy associated
with the transition may be estimated using the area under this curve,

�S =
∫

peak

Cp

T
dT . (3.5)

A simple integration of this function, removing a background of 9R, results in �S =
14.1 J mol−1 K−1. However, if one uses the experimental values for Li2O (available for
temperatures less than 1125 K—see [22] and references therein) coupled with a linear
extrapolation (as discussed in [22] and shown in figure 6) a much smaller value of �S =
5.8 J mol−1 K−1 results. These values are consistent with those calculated for the fluorite
systems [10, 11]. However, the variation in values depending on the integration procedure
prevents a useful detailed comparison.
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Figure 6. The heat capacity calculated for the Li2O AIM (�) compared with that calculated for
CaF2 (×) [10] and PbF2 (inset) [11]. The light circles represent the experimental heat capacities
and the light dashed line the extrapolation of these data to temperatures greater than 1125 K (as
shown in [22]).

3.5. Conductivity and diffusion

The ionic conductivity can be formally expressed in terms of the charge current correlation
function [61]

λK = βe2

V

∫ ∞

0
J (t) dt, (3.6)

where β = 1/kT , e is the electronic charge and J is a charge current correlation function. We
have found it more convenient to examine the long-time limit of an equivalent expression in
terms of the mean squared displacement of the charge density [11]:

λK = βe2

V
lim

t→∞(6t)−1〈|Q+∆+(t) + Q−∆−(t)|2〉, (3.7)

where ∆α(t) is the net displacement of all the ions of species α in time t

∆α(t) =
∑
iεα

δri (t), (3.8)

where δri(t) is the displacement of ion i in time t . A plot of the mean squared charge
displacement appearing in the angle brackets versus time, becomes linear after the short-time
correlations have died out, and the conductivity can be calculated from this slope.

If all the correlations between ionic displacements are ignored (〈δri (t)δr j (t)〉 = 0 for
i 
= j ) we obtain the Nernst–Einstein approximation to the conductivity in an equivalent form:

λNE = βe2 lim
t→∞(6t)−1[Q2

+ρ+〈|δ+(t)|2〉 + Q2
−ρ−〈|δ−(t)|2〉], (3.9)

where δα(t) is the displacement of a single ion of species α. From the usual relationship
between the mean squared displacement and diffusion coefficient this is just

λNE = βe2(ρ+ Q2
+ D+ + ρ− Q2

− D−), (3.10)

where ρα and Dα are the number density and diffusion coefficient of species α.
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Figure 7. Diffusivity data (main panel) plotted in Arrhenius form for the Li+ cation in the crystal
(×) and the Li+ (�) and O2− (◦) ions in the liquid. The light line shows the diffusion coefficients
extracted from experimental conductivity data [62]. The inset shows the time correlation function
gradients from equations (3.7) and (3.10) required to calculate the Nernst–Einstein (×—crystal,
�—liquid) and collective (+—crystal, ◦—liquid) conductivities respectively.

Figure 7 shows the diffusivity data (plotted in Arrhenius form) for the mobile ions in both
the liquid and superionic crystal states. The liquid and crystalline diffusion coefficients are
calculated from simulations of total length 130 and 150 ps respectively at each temperature.
The inset of the figure shows a plot of the gradients required to calculate λNE and λK (in
equations (3.10) and (3.7) respectively) plotted in analogous form. The Nernst–Einstein
calculated values show a characteristic jump in gradient (and hence in calculated conductivity)
at the system melting point, simply resulting from the greater ion mobility as a function of
temperature and the melting of the anion sublattice. The inclusion of the collective effects,
however, leads to significantly different behaviour with the gradient of the time correlation
function (and hence the conductivity) falling on system melting. This behaviour can be
associated with the difference in collective effects present in the solid and liquid states. In the
former, only the Li+ cations are mobile and so the collective motion appears to increase the
motion of the positive charge with respect to the single-ion value (Haven ratio greater than
one). Conversely, in the liquid state both ion species are in motion with the generally observed
result that the anion and cation charge densities tend to move in a highly correlated fashion.
As a result, the overall collective conductivity appears smaller than would be expected from
considering the single-ion motion (Haven ratio less than one).

4. Conclusions

In this paper a fully flexible aspherical ion model has been derived for lithium oxide by fitting
a range of ion and cell properties to a series of electronic structure calculations. The AIM
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has been shown to reproduce a range of both static and dynamic properties, in particular,
reproducing the phonon dispersion curves and the pronounced Cauchy violation in the elastic
constants. The system undergoes a transition to a superionic state at ∼1450 K (as measured by
the peak in the heat capacity) and melts at ∼1900 K. The accuracy and efficiency of the model
parametrization demonstrates the effectiveness of both the model and the parametrization
methodology.
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